您的浏览器禁用了JavaScript(一种计算机语言,用以实现您与网页的交互),请解除该禁用,或者联系我们。[IBM]:2024云端制造 - 发现报告
当前位置:首页/行业研究/报告详情/

2024云端制造

机械设备2024-03-02IBM玉***
2024云端制造

IBM商业价值研究院|研究洞察 云端制造 运营和订高管将愿景转化为优势 TBMaws IBM如何提供帮助 IBM可以带助制造商利用混合云、AI和自动化实现全新的业务数捷水平。我们将依托于久经考验的工业4.0 梦考架构和行业标准来粥助您制定战略方向,在开放平 台上始终如一地部署先进车间技术来实现规模化运营, 并合理选择制造流程用例来缓解燃眉之急,充分释放价 值。如需了解更多信息,请访问 visitibm.com/industries/manufacturing AWS如何提供帮助 AWS通过先进的云解决方案(包括机器学习、物联网、机器人和分析)帮助领先制造商转查其运营方式。AWS可助力制造商将资源集中投入用于优化生产、创建新的 暂能产品以及提高整个价值链的运营效率,而不是投入 大量资源搭建基础设施。如需了解更多信息,请访问 aws.amazon.com/manufacturing/ 摘要 基于云平台的先进数字技术近一半(48%)的受访制造商表示还有 可以推动制造业转型。空间更充分地释放云计算的价值。 企业需要从仅利用孤立云用例节省成本,转变为制定端到 粥、成效驱动的云战略。 创新制造商正在利用云计算夯实数字 灵活性的基础。 领先制造商更加广泛地实施了数据驱动型文化(与其最接 近的对手类别相比高出1.7借),因此更有利于采用推动运营转型的新兴技术。 AI和物联网等云端数字技术推动重塑。 领先制造商正在推动工作方式和技术工具现代化,同时损 资提升员工团队的数字技能,从而提高须效和生产力。 释放云计算的潜力 随若工业4.0时代的发展,制造组织一直在稳步采用云计算,大多数受访制造组织表示在2022年取得了重大实施进展。 尽管云计算是数字化转型的基石,但IBM商业价值研究院(IBMIBV)和AmazonWebServices(AWS)的最新研究表明,许多制造组织可能并未充分利用云计算的价值和机会。根据我们针对全球制造商开展的一项调研,仅有一半(52%)的受访IT高管表示其组织正在充利用云计算的优势。 事些因素在阻碍制造商释放云计算的价值?我们从调研中发现这有三个方面的原因: 一迁移至云端的制造相关工作负软大减少,这阻碍了利用云计算作为关键驱动力的先 进运营项目。 一一些制造商并未制定通盖云计算、AI、物联网和制造活动应用现代化的整体技术 战路。 一一些受访制造者高度关注或本节省,而不是改善业务成效,例如释放核心制造业务的 绩效和价值。 这对制造商有何启示?在采用云计算方面,仅停留于直接迁移工作负载或简单的独立用例是远远不够的。更注重成效的方法可以帮助制造商提高生产力、质量、设备可用性和可持续性,同时加速工程工作和产品生命周期管理。 制造组织正在开展下一阶段的复杂技术驱动型项目,包括供应链协同、质量分析与问题解决、材料与生产优化以及预测性资产监控。制造组织也广泛认识到,这些举措需要整合数据、安全性和指数级技术,并以云计算为基石,充分释放创新的强大力量。事实上,根据IBM商业价值研究院的最新调研,与仅使用云技术相比,云计筛与其他业务转 型举措相结合可以将效益提升13倍。2 如果缺乏更具战略性、价值驱动的云方法,制造业的数字化转型就会变得更具排战性。为了探 索制造组织如何从云计算和基于云的先进技术中释放更多价值,我们分析了全球1,100多家制 造企业的制造高管和IT高管的调研回答,以评估其组织的数字技术成熟度和数据成熟度。受访者来自汽车、电子、下游石油和天然气、化工、金属和工业机株领域(请参阅第32页的 “调研和研究方法”)。我们从分析中发现了四种具有代表性的制造商原型/类别(见图1): =受限运营者(ConstrainedOperators):在数字技术和数据管理方面均处于落后状态 -数字化热惠者(DigitalEnthusiasts):致力于推动数字化转型,但在数据实践方面处于落 后状态 -数据聚焦决策者(Data-focusedDeciders):投资于数据管理但缺乏技术支持 -转型优化者(TransformationalOptimizers):利用数据和技术推动成功。 图1 在利用数据和数字技术方面的成熟度正在决定制造商如何释放云计算的更深层价值 数据或熟度高 DDTO 转型优化老 数宇技术成熟度任数宇肢术成熟度高 CODE 受限运营者欧字热表者 22%的受访者24%的受访者 数据成熟度低 根据调研数据,我们确定了“转型优化者”在关键绩效为何只有一半的制造组织利用云计算 指标上脱颖而出并成功释放云计算优势所具备的五项典充分释放了业务成效? 型特征: -现代云平台 一强大的数据基础制造相关业务的应用/系 一数字技术整合统工作负毁中有四分之三 尚未迁移到云端 一新的工作方式 一业务成效与云计票密切相关。 本报告深入探讨了上述每一项特征,分析了“转型优化四分之三的制造组织尚未者”在每个领域为支持其运营优先事项所做的努力。行制定涵盖云计算、AI、物联 动指南根据制造商在数字技术和数据管理方面的成熟度网和制造活动应用现代化 提供了未来发展的三步计划。的整体技术战略 五分之三的制造高管和 IT高管表示其组织并不关注业务成效。 间(7):责组织三格多少百分比的密用/系统工作负整从数驾中心迁 移至云模?间():造超进责织针对以下活动的益术战路。间 (8期T):在多大量度上同图以下累送:和适关注费本量 日收业募成效;吉分比表屏存5分8中图著4和5的比,其中工 推动制造业转型的特征 特征#1混合云有助于准动数字转型一它将公有云、私有云和本地部署环境融合在一起,避立统 一、灵活、成本最优的IT基础架构,让组织能够在最合适的位置处理数据。“泥合云可 现代云平台支持从工厂车间的传感器、设备和机器收集实时数据,并提供给其他工厂资产使用,还 可以在企业的整个软件体系中共享,包括ERP和其他业务管理软件。4 同样,云平台可支持特所需的IT负载,例如运营技术(OT)与IT集成、边缘分析、OT安全 以及新兴应用和传统应用。云平台可以集中管理案自不同制造业务的数据,从而实现跨 工厂润案、KPI对比和优化。5除了基本的云基础架构优势以外,超过60%的受访高管还指出容器、可移植性和DevSecOps等先进云功能是不可或缺的成功因素。 但许多制造高的当前云案构不足以支持大部分主要项目,因此也就难以协同多种数字技术来保障这当优先事项的顺利实施(见图2)。例如,预测性资产管理可能需要依托于云计算、附联网、AI和5G。制造质量根源分析则需要依托于云计算、物联网、AI、计算 机视觉技术和边计算。如果没有相应的云平台案为其他技术提供支持,则这些项目可 能会陷于停滞甚至失败。 图2 受访高管表示其组织的云架构不足以支持一些 最重要的技术项目。 ■技术项日的重型性运营技术项目的重要性VS措建了提供支持的云架构” ■提供卖持的云案构 供应协同58% 44% 缺口 制造质量根源分析57% 50% 缺口 材料优化55% 49% 缺口 生产优化54% 52%H 支持 预测性资产监控和 绩效管理51% 48% 支持 制造质量问题解决51% 40% 缺口 运输优化50% 46% 支持 费口的定义是超过5%的百分线益8。(通):下运置资本费品对 责组的量要理意如向?百分比要示在5分中客4积5的比,其中1=完全不重要,5=准常重要,网(7):费织的云果期可为运营质日提供多大程震的支持?吾分比表示在5分8中回等4积5的比8,真1 完全没高,5=#常点 *转型优化者”在实施云技术以支持高级运营项目方面取得了最大进展(见图3)。以供应协同这个重要领域为例,美国制造商协会的一项调研发现,近80%的受访制造商将 供应链中新视为其首要业务排战。“更高比例的“转型优化者”表示其云架构可为供应 协同提供支持,其比例要比其他组织高15倍。“转型优化者”正在遇过实时展踪来监 控和管理材料流,以及跟踪在制品和成品。借助这种洞察力,此类制造商可以在问题发 生时及时进行干预,从而防止,库存间题。制造高管估计,经过优化的供应协同可以将供 应链成本降低37%。 同样,更高比例的“转型优化者”表示其组织的云架构可为制造质量根源分析项目提供支持,其比例是其他组织的1.4信。识别制造流程中的间题或铁陷并自动纠正是一项重 要能力,这有助于史快地确定问题的原因并减少重复出现的问题。受访高管估计,专注 于这项重要能力可以将依质量造成的或本影响降障低57%。 “转型优化者”在预测性资产管理方面也更有优势一受访高管表示预测性资产管理可以将资产可用性提高52%。利用数据和分析,预测性功能有助于促进资产利用率,并避免成本高昂的停机和维修。 图3 “转型优化者”表示已搭建更成然的云架构来支持运营技术项目。 表示其组织云架构支持所列运营技术项目的受访者百分比 DCO DE OL 36% 43% 60% 制造质量根源分析 CODEDD TO 42%45%46% 62% 供应协同36% 材科优化 COTO 42%49%54% 生产优化51% CODETO 48%52%56% 预测性资产监控和 绩效管理47% COCDDTO 35%48%58% 制造质量问题解决 CODEDDTO 26%34%45%%0S 运输优化46% TO CoCDE 36%%752% 蛋限运营者数化热惠者转型优化者 间(7):责组织的云策持可为运营项与经供步大量惠的变持?百分比表示在5分中回答4和59比8,其中1=完金没再,5=异常高 8 案例研究 大众汽车推动制造和物流转型为了推动汽车制造和物流流程转型,大众集团在AWS 上构✁了大众工业云(VolkswagenInclustrialCloud) 可利用AWS物联网服务连接来自120多个工厂站点✁ 机器、工厂和系统✁数据。大众工业云✁目标是将生产 力提高30%,将工厂成本降低30%,并实现超过10亿美元✁供应疑成本节省。大众集团还利用AWS拓展制造业边界,发展共享出行服务、智能网联汽车和沉漫式 金拟购车体验,望造移动出行✁未来。 IBMSystemsManufacturing IBMSystemsManufacturing并未构✁立✁AI解决方 结合混合云与边缘计算更充分 案,而是将混合云与边综计算相结合,助力全球制造企 业更如充分地释放AI✁价值。该团队在位于加享大。 地释放AI价值8匈牙利、墨西哥和美国✁工厂装配线上部署了前所未末有 ✁AI视免检测系统。 该解决方案合在利用云和边爆计算来消除在数中心中 运行AI推理时出现✁带宽和延退问恶。通过将AI模型 部署到边绿设备,并在边绿处理图像数据,企业可以实 时检测到异常并采取行动。 AI模型和边缘设备均在云谱采用自动化集中管理✁方式,可将软件维护成本降低20%。在其中一个应用场景中,与人美验查员相比,AI自动化将检查时间从10 分钟缩短至1分钟。 特征#2制造商拥有足够✁数据来推动影响深远✁运营变革,但大约90%✁数据位于现立✁系统中。"而云计算则改变了这一格局,让制造商能够营造一种积极✁文化,以推动高质量数 强大✁数据基础据民主化并支持员工熟练掌握数字技术。来自设备、流程和系统✁数据可提供更深入✁ 洞察,从而推动持续流程改进。 *转型优化者”展现出了最高✁数据成熟度,在实施数据驱动文化方面,其比例是“数据聚焦决策者”✁1.7倍,并且是“受限运营者”✁2.9倍。此类领先制造商正在利用云 计算和其他技术来加强数据管理实践(见图4)。例如,近三分之二(63%)✁“转型优 化者”组✁了精通云服务✁数据专家团队,并且能够近乎实时地更新数据存储库。这有 助于确保员工能够利用最新数据状取洞察,从而改善工厂运营。 10 图4 云计算支持强大✁数据管理实践,从而提高工厂运营效率。 实施所列数据管理实践✁受访者百分比 精通云服务✁数据专家团队43% 45%51%63% 近乎实时地更新数据存储库 DD 26%38%52% 利用API支持内部数据共享 活动 CO %EE4