您的浏览器禁用了JavaScript(一种计算机语言,用以实现您与网页的交互),请解除该禁用,或者联系我们。[民生证券]:碳化硅行业深度报告:新材料定义新机遇,SiC引领行业变革 - 发现报告
当前位置:首页/行业研究/报告详情/

碳化硅行业深度报告:新材料定义新机遇,SiC引领行业变革

碳化硅行业深度报告:新材料定义新机遇,SiC引领行业变革

碳化硅:第三代半导体突破性材料。SiC是第三代半导体材料,其具备极好的耐压性、导热性和耐热性,是制造功率器件、大功率射频器件的突破性材料。 根据Wolfspeed预计,2022年全球碳化硅器件市场规模达43亿美元,2026年碳化硅器件市场规模有望成长至89亿美元。当前SiC功率器件价格较高,是硅基IGBT的3~5倍左右,但凭借优异的系统节能特性,SiC器件开始在新能源汽车、光伏、储能等领域替代硅基器件。 SiC引领行业变革,新需求快速涌现。新能源汽车是碳化硅功率器件下游第一大应用市场,根据我们测算,2026年全球应用于新能源汽车主驱逆变器的SiC器件市场规模有望达44亿美元。为了提升电动汽车充电速度、缓解里程焦虑,小鹏、比亚迪、长城、保时捷、现代等整车厂陆续推出800V高压平台车型,有望推动SiC器件在新能源汽车中渗透率进一步提升。 国际巨头垄断行业,国产厂商加速破局。当前全球SiC衬底总年产能约在40~60万片等效6英寸,无法满足下游旺盛需求。根据Yole预测,随着衬底厂商技术进步、产能进一步扩张,2025年6英寸导电型衬底价格有望降至590美元,这将带动SiC器件渗透率提升,有望在未来与Si-IGBT双雄并驱。此外,当前Wolfspeed、II-IV、罗姆三家海外大厂占据了全球89%导电型衬底市场,意法半导体、英飞凌、安森美、Wolfspeed等六家海外大厂占据了全球99%碳化硅功率器件市场,行业格局被海外大厂垄断,国内厂商正在加速破局。 新需求带来新机遇,技术进步推动新未来。对于SiC衬底制造来说,PVT法生长速率慢、制备难度大、晶锭良率低,因此产能提升较慢,但衬底制造各环节均有工艺改善空间,溶液生长法、激光切割等技术的进步等有望推动衬底产能进一步提升,衬底有望持续降本。对于SiC器件制造来说,由于SiC材料透明、离子扩散温度高等特性,在器件制造过程中光刻对准、高能离子注入、高温退火工艺、栅氧质量控制、蚀刻工艺等环节相较硅基器件难度较大,器件制造扩产较为困难。对于SiC功率模块来说,由于SiC器件耐受工作温度较高,AMB基板凭借更高的热导率等性能优势,成为SiC器件导热基板材料首选。 投资建议:随着碳化硅技术的不断突破,国内供应商有望加速追赶国际龙头。 建议关注国内垂直一体化龙头厂商三安光电;SiC衬底制造商天岳先进等;器件厂商时代电气、斯达半导、新洁能、士兰微、华润微、扬杰科技、闻泰科技、中瓷电子、长飞光纤、积塔半导体、比亚迪半导体等;SiC设备公司北方华创、晶盛机电、中微公司、芯源微等。 风险提示:碳化硅在下游应用领域渗透率不及预期;国家产业政策变化;全球碳化硅行业竞争激烈。 重点公司盈利预测、估值与评级 1碳化硅:第三代半导体突破性材料 1.1优质的新型半导体衬底材料 半导体材料根据时间先后可以分为三代。第一代为锗、硅等普通单质材料,其特点为开关便捷,一般多用于集成电路。第二代为砷化镓、磷化铟等化合物半导体,主要用于发光及通讯材料。第三代半导体主要包括碳化硅、氮化镓等化合物半导体和金刚石等特殊单质。凭借优秀的物理化学性质,碳化硅材料在功率、射频器件领域逐渐开启应用。 第三代半导体耐压性较好,是大功率器件的理想材料。第三代半导体主要是碳化硅和氮化镓材料,SiC的禁带宽度为3.2eV,GaN的禁带宽度为3.4eV,远超过Si的禁带宽度1.12eV。由于第三代半导体普遍带隙较宽,因此耐压、耐热性较好,常用于大功率器件。其中碳化硅已逐渐走入大规模运用,在功率器件领域,碳化硅二极管、MOSFET已经开始商业化应用。 表1:三代半导体材料特性对比 图1:碳化硅耐压特性优异 基于上述特性,以碳化硅为衬底制成的功率器件相比硅基功率器件在性能方面更加具有优势:(1)更强的高压特性。碳化硅的击穿电场强度是硅的10余倍,使得碳化硅器件耐高压特性显著高于同等硅器件。(2)更好的高温特性。碳化硅相较硅拥有更高的热导率,使得器件散热更容易,极限工作温度更高。耐高温特性可以带来功率密度的显著提升,同时降低对散热系统的要求,使终端可以更加轻量和小型化。(3)更低的能量损耗。碳化硅具有2倍于硅的饱和电子漂移速率,使得碳化硅器件具有极低的导通电阻,导通损耗低;碳化硅具有3倍于硅的禁带宽度,使得碳化硅器件泄漏电流比硅器件大幅减少,从而降低功率损耗;碳化硅器件在关断过程中不存在电流拖尾现象,开关损耗低,大幅提高实际应用的开关频率。 根据ROHM的数据,相同规格的碳化硅基MOSFET导通电阻是硅基MOSFET的1/200,尺寸是是硅基MOSFET的1/10。对于相同规格的逆变器来说,使用碳化硅基MOSFET相比于使用硅基IGBT系统总能量损失小于1/4。 图2:碳化硅MOSFET器件体积更小 图3:碳化硅MOSFET器件节能性更好 碳化硅优良的频率、散热特性,使得其在射频器件上也得到广泛应用。碳化硅、氮化镓材料的饱和电子漂移速率分别是硅的2.0、2.5倍,因此碳化硅、氮化镓器件的工作频率大于传统的硅器件。然而,氮化镓材料存在耐热性能较差的缺点,而碳化硅的耐热性和导热性都较好,可以弥补氮化镓器件耐热性较差的缺点,因此业界采取半绝缘型碳化硅做衬底,在衬底上生长氮化镓外延层后制造射频器件。 图4:碳化硅器件与硅基器件频率特性 按照电学性能的不同,碳化硅衬底可分为半绝缘型碳化硅衬底和导电型碳化硅衬底两类,这两类衬底经外延生长后分明用于制造功率器件、射频器件等分立器件。其中,半绝缘型碳化硅衬底主要应用于制造氮化镓射频器件、光电器件等。通过在半绝缘型碳化硅衬底上生长氮化镓外延层,制得碳化硅基氮化镓外延片,可进一步制成HEMT等氮化镓射频器件。导电型碳化硅衬底主要应用于制造功率器件。 与传统硅功率器件制作工艺不同,碳化硅功率器件不能直接制作在碳化硅衬底上,需在导电型衬底上生长碳化硅外延层得到碳化硅外延片,并在外延层上制造肖特基二极管、MOSFET、IGBT等功率器件。 表2:半绝缘型和导电型碳化硅衬底的对比 图5:碳化硅外延生长及下游应用 外延工艺是指在碳化硅衬底的表面上生长一层质量更高的单晶材料,如果在半绝缘型碳化硅衬底上生长氮化镓外延层,则称为异质外延;如果在导电型碳化硅衬底表面生长一层碳化硅外延层,则称为同质外延。 外延层的生长可以消除衬底生长中的某些缺陷,生长的外延层质量相对较好。 碳化硅晶体生长的过程中会不可避免地产生缺陷、引入杂质,导致衬底材料的质量和性能都不够好。而外延层的生长可以消除衬底中的某些缺陷,使晶格排列整齐。 例如衬底缺陷中的BPD(基平面位错)约95%转化为TED(贯穿刃型位错),而BPD可导致器件性能退化,TED基本不影响最终碳化硅器件的性能。 图6:碳化硅衬底层和外延层结构 图7:碳化硅外延片缺陷与衬底片缺陷的关联性 表3:外延片缺陷对最终器件的影响 1.2碳化硅功率器件性能优异 由于碳化硅材料具有高禁带宽度、高饱和电子漂移速度、高击穿强度、高热导率等特点,碳化硅是功率器件理想的制造材料。当前碳化硅材料功率器件主要分为二极管和晶体管,其中,二极管主要包括肖特基二极管(SBD)、结势垒肖特基二极管(JBS)、PiN功率二极管(PiN);晶体管主要包括金属氧化物半导体场效应晶体管(MOSFET)、绝缘栅双极晶体管(IGBT)、结型场效应晶体管(JFET)、双极型晶体管(BJT)、晶闸管。 图8:碳化硅功率器件分类 表4:碳化硅二极管分类 碳化硅MOSFET主要分为平面结构和沟槽结构。平面型碳化硅MOSFET的结构特点是工艺简单、单元的一致性较好、雪崩能量比较高;缺点是当电流被限制在靠近P体区域的狭窄的N区中流过时会产生JFET效应,增加通态电阻,且寄生电容较大。 沟槽型碳化硅MOSFET是将栅极埋入基体中,形成垂直的沟道,这种结构的特点是可以增加单元密度,没有JFET效应,沟道晶面实现最佳的沟道迁移率,导通电阻比平面结构要明显的降低;缺点是由于要开沟槽,工艺变得复杂,且单元的一致性较差,雪崩能量比较差。 图9:碳化硅MOSFET平面结构(左)与沟槽结构(右) 沟槽型碳化硅MOSFET专利壁垒较高。目前国际上量产平面型碳化硅MOSFET的碳化硅厂商主要有Wolfspeed、意法半导体、Microsemi、罗姆等,国内量产的有APS、瀚薪、派恩杰、清纯半导体等Fabless厂商。而目前可量产的SiC沟槽结构较为稀缺,全球量产沟槽型碳化硅MOSFET的仅有罗姆的双沟槽结构、英飞凌的半包沟槽结构、日本住友的接地双掩埋结构等。 表5:沟槽结构SiC MOSFET 相比平面型MOSFET,沟槽型碳化硅MOSFET在成本和性能上都具有较强优势。以罗姆的第三代碳化硅MOSFET(第一代沟槽型碳化硅MOSFET)为例,其芯片面积仅为罗姆第二代平面型碳化硅MOSFET的75%,且同一芯片尺寸下其导通电阻降低了50%。而罗姆的第二代沟槽型碳化硅MOSFET相比第一代沟槽型碳化硅MOSFET导通电阻亦可再降低40%。 图10:罗姆沟槽型与平面型SiC MOSFET对比 图11:罗姆第二代和第一代沟槽型SiC MOSFET对比 1.3星辰大海,蓝海市场空间广阔 最早商业化碳化硅产品的是美国的CREE公司,其发展历史具有较强的代表性。碳化硅的产业化基本可分为三个阶段,第一阶段是碳化硅LED的诞生及商业化,第二阶段是射频器件的商业化,第三部分是功率器件的商业化。2002年CREE推出商用肖特基二极管、2011年推出商用碳化硅MOSFET是行业两个重要的发展节点。2019年特斯拉在Model3新能源汽车上应用碳化硅MOSFET产品更是将行业热情进一步推向高点。CREE的碳化硅器件项目2021年前主要由旗下子公司Wolfspeed负责,目前CREE已经出售LED业务,并更名为Wolfspeed,主营业务变更为碳化硅射频及功率器件。 图12:Wolfspeed公司第三代半导体发展历史 碳化硅在射频、功率器件领域应用广泛,市场增长空间广阔。根据碳化硅行业全球龙头厂商Wolfspeed的预测,受新能源汽车及发电、电源设备、射频器件等需求驱动,2026年碳化硅器件市场规模有望达到89亿美元,其中用于新能源汽车和工业、能源的SiC功率器件市场规模为60亿美元,用于射频的SiC器件市场规模为29亿美元。碳化硅在功率及射频器件领域具备较强的优势,具备较强的应用价值,有望在新能源汽车、工业和能源、射频市场逐步完成对硅基器件的替代。 根据YOLE的预测,碳化硅的市占率有望在2024年突破10%。 图13:碳化硅器件市场规模及预测(亿美元) 图14:碳化硅器件市占率不断提升 第三代半导体战略意义重大,世界各个国家和地区均在努力推进发展工作。欧洲的SPEED计划、MANGA计划,美国的SWITCHES计划、NEXT计划,日本的新一代功率电子项目都是意在通过政府资助和企业加强投资的方式推动新一代化合物半导体落地的计划,背后都具有明显的战略意图。第三代半导体的重要性各国都已明确,中国早在2016年的“十三五”规划中就将碳化硅和半导体照明列入重点项目,随后科技部、发改委等四部门又将碳化硅衬底技术列入重点突破领域。 表6:各个国家和地区三代半导体发展计划 我国亦在大力推动碳化硅行业发展,国资不断支持国内厂商立项融资。2018年国内碳化硅相关的投资项目签署额仅50亿元,到2020年已达463亿元,且其中有接近90%的项目有政府参与,表明了国家对该领域的大力支持。 图15:2018-2020年国内碳化硅签署投资项目总额(亿元) 图16:2020年政府参与项目的占比(亿元) 1.4碳化硅产业链价值集中于上游衬底和外延 碳化硅产业链主要包括衬底、外延、器件设计、器件制造、封测等。从工艺流程上看,碳化硅一般是先被制作成晶锭,然后经过切片、打磨、抛光得到碳化硅衬底;衬底经过外延生长得到外延片。外延片经过光刻、刻蚀、离子注入、沉积等步骤制造成器件。将晶圆切割成die,经过封装得到器件,器件组