AI智能总结
目录 第一章:氢能产业链上游第二章:氢产业链中游(燃料电池动力系统)第三章:氢能关键装备市场展望第四章:我国氢能发展规划介绍第五章:海外氢能发展规划介绍 第一章:氢能产业链上游 氢能:来源广泛的二次能源 交通运输领域:氢燃料电池汽车 交通运输业排放占全球碳排放量的1/3。燃料电池车具有零排放、续航里程长等特点,是交运行业减碳的最佳选择 建筑领域:分布式热-电联供系统 氢气供燃料电池发电,燃料电池发电产生热量用于供暖与热水供应 储能领域:氢储能参与电网辅助 氢储能系统耦合风光等可再生能源参与电网削峰填谷、调峰调频等作用 氢气在发生泄露后极易扩散,爆炸下限浓度高于汽油和天然气 工业领域:氢能炼钢 利用氢气的高还原性,代替焦炭作为高炉还原剂,以避免钢铁生产中的碳排放 我国氢能产业具备长期发展潜力 根据中国氢能联盟的预测,在2030年碳达峰愿景下,我国氢气的年需求量预期达到3,715万吨,在终端能源消费中占比约为5%;可再生氢产量约为500万吨,部署电解槽装机约80GW。在2060年碳中和愿景下,我国氢气的年需求量将增至1.3亿吨左右,在终端能源消费中占比约为20%。其中,工业领域用氢占比仍然最大,约7,794万吨,占氢总需求量60%;交通运输领域用氢4,051万吨,建筑领域用氢585万吨,发电与电网平衡用氢600万吨。 数据来源:中国氢能联盟,国信证券经济研究所整理及预测 数据来源:中国氢能联盟,国信证券经济研究所整理 制氢——路径及成本比较 •当前全球氢气年产能约7000万吨,我国氢气产能约3342万吨;国外市场以天然气制氢为主,占比约为75%;我国以煤制氢为主,占60%以上。 •全球可再生能源制氢占比极小,却是降低燃料电池汽车全生命周期碳排放量的主要途径,因此正在得到全球范围的大力推动。我国碱性水电解制氢技术较为成熟,应用比较广泛,但存在单体制氢能力较小、电流密度小、占地面积大等问题。质子交换膜电解制氢技术国内外均处于研发和小量应用阶段,我国质子交换膜制氢技术在设备成本、催化剂技术、质子交换膜本身等方面与国际先进水平差距较大。因此,短期以成熟的碱性水电解制氢技术为主,中长期为碱性、质子交换膜等多种制氢方式并存。其他制氢方式包括生物质制氢、光解水制氢、核能制氢等,但目前仍处于实验研发阶段,尚无规模化应用。 制氢——化石能源制氢是我国目前主要氢源 •2019年,我国氢气主要来源于化石能源制氢(煤制氢、天然气制氢);其中,煤制氢与产量达到2,124吨,占我国氢能产量的63.54%,天然气制氢产量为460万吨,占我国氢能产量的14%,而电解水制氢产量仅约为50万吨。 •煤制氢技术路线稳定高效,制备工艺成熟,也是成本最低的制氢方式,经测算,在原料煤价格在800元/吨时,制氢成本约为12.64元/kg。 •天然气制氢技术中,蒸汽重整制氢较为成熟,是国外主流的制氢方式,经测算,在天然气价格为2.5元/Nm3时,天然气制氢的成本约为12.79/kg,其中天然气原料成本占据总成本的70%以上。 制氢——工业副产氢亟待有效利用 •我国工业副产氢资源丰富,可作为我国氢能发展初期的过渡性氢源。化石能源制氢过程碳排放巨大,而在工业副产物中提取氢气既可减少碳排,又可以提高资源利用率与经济效益。目前我国排空的工业副产氢产量约为450万吨,可供97万辆氢燃料公交车全年运营。其中,PDH以及乙烷裂解副产氢约为30万吨,主要分布在华东及沿海地区;氯碱副产氢约为33万吨,主要分布在新疆、山东、内蒙古、上海、河北等省市;焦炉煤气副产氢约为271万吨,主要分布在华北、华中地区;合成氨醇等副产氢约为118万吨,主要分布在山东、陕西、河南等省份。 数据来源:《中国氢能产业发展报告2020》,国信证券研究所整理 制氢——电解水制氢代表未来主流技术 •电解水制氢主要有碱性电解(AWE)、质子交换膜(PEM)电解、固体氧化物(SOEC)电解这三种技术路线。碱性电解水制氢技术路线成熟,设备造价低,更具经济性。PEM电解水由于具有良好的对可再生能源发电波动的适应性以及更高的能量转化效率,目前已成为主流的电解水技术。根据国际能源署(IEA)数据显示,2015-2019年间,全球新增电解槽装机中,PEM电解槽装机容量占比超过80%。 制氢——电解水制氢成本分析 •电解水制氢成本一般包括设备成本、能源成本(电力)、原料费用(水)以及其他运营费用。与化石能源制氢和工业副产氢相比,碱性和PEM制氢技术在生产运行成本与设备投资成本上均较为昂贵。随着未来可再生能源发电平价上网,尤其是对局部区域弃风弃光的充分利用,可再生能源电价有望持续降低。 •以目前的电解水平,当可再生能源电价降至0.2元/kWh时,电解水制氢成本将接近于化石原来制氢成本。同时,随着制氢项目的规模化发展、关键核心技术的国产化突破、电解槽能耗和投资成本的下降以及碳税等政策的引导下,电解制氢技术在降低成本方面极具发展潜力。 数据来源:《氢能供应链成本分析及建议》,国信证券经济研究所测算 制氢业务相关上市公司梳理 储氢运氢——气、液、固三种方式比较 •氢储存的方式有高压气态储氢、低温液态储氢和固态储氢。目前高压气态储运氢技术相对成熟,是我国现阶段主要的储运方式。 •气氢通常以20MPa钢制氢瓶储存,并通过长管拖车运输,适用于短距离、小规模输运。管道输氢是实现氢气大规模、长距离运输的重要方式,但建设成本较大,目前我国仅有100km管道建设。据《中国氢能产业基础设施发展蓝皮书》预测,2030年我国氢气管道有望达到3000km。 •液态储氢是指在标准大气压下,将氢气冷却至零下252.72摄氏度液化储存在特制的高度真空的绝热容器中,常温常压下液氢的密度为气氢的845倍,适用于距离较远、运输量较大的场合,但装置投资较大,能耗较高。 •固态储运是以金属氢化物、化学氢化物或纳米材料等作为储氢载体,通过化学吸附和物理吸附的方式实现氢的存储。固态储氢具有储氢密度高、安全性好、氢气纯度高等优势。但技术复杂,成本高,尚无规模化使用。 储氢运氢——三种形式的结合应用前景 •对于高压气态运氢运输,当运输距离为50km时,运输成本为3.6元/kg,随着距离的增加长管拖车运输成本大幅上升,当运输距离为500km时,氢气的运输成本达到29.4元/kg。因此,长管拖车只适合短距离运输(小于200km)。 •液氢槽罐车运氢成本对距离不敏感,当加氢站距离氢源点50-500km时,运输价格在10.4-11.0元/kg范围内,这是由于液氢成本主要来源于液化过程中的耗电费用,仅与载氢量有关,而与距离无关。因此,液氢罐车在长距离运输下更具成本优势。 •管道运氢成本主要来源于与输送距离正相关的管材折旧及维护费用,当输送距离为100km时,运氢成本仅为0.5元/kg。但管道运氢成本很大程度上受到需求端的影响,在当前加氢站尚未普及、站点较为分散的情况下,管道运氢的成本优势并不明显。但随着氢能产业逐步发展,氢气管网终将成为低成本运氢方式的最佳选择。 数据来源:《氢能供应链成本分析及建议》,国信证券经济研究所测算;注:长管拖车或液氢槽罐车百公里耗油25L,柴油价格7元/L,电价0.6元/kWh,过路费用0.6元/km,保养费用为0.3元/km,每车配备两名司机,装卸氢过程各需一名操作人员,人工费用为10万元/年;管道输氢建设成本基于济源-洛阳氢气管道项目测算。14 储氢运氢——液氢关键技术与设备国产化是核心 •长期以来,受制于换热器、绝热器等设备,以及民用标准的缺乏,国内液氢主要用于航天和军工领域,民用液氢推进缓慢,氢液化设备也主要由美国空气产品、普莱克斯、德国林德等厂商提供。而目前日本、美国已将液氢罐车作为加氢站运氢的重要方式之一。 •随着近两年国内氢能兴起,民用液氢领域现已汇聚了中科富海、航天101所、国富氢能、鸿达兴业等一批机构和企业,在相关技术上屡获重大突破;同时国家已发布液氢生产、贮存和运输的国家标准,这使液氢民用有标可依,实现了我国液氢产业民用领域标准零突破,为液氢进入市场化发展提供重要支撑。在国家政策支持下,燃料电池汽车示范推广提速。 储氢运氢——加氢站 •目前国内已建成运营的加氢站设计最大氢气加注容量通常为 500kg/天或者1000kg/天。 •2021年3月投入使用的北京大兴氢能科技园加氢站项目是目前全球规模最大的加氢站,最大加注量达4800Kg/天;可为日均600辆燃料电池物流车提供服务。 •除去土地成本外,建设一座35MP、日加氢500kg的固定式加氢站的平均投资在1500万元左右。未来几年,随着设备生产规模扩大以及关键设备如压缩机、加氢机的国产化,压缩系统、储氢系统以及加氢系统的成本将明显下降,国内加氢站建站成本有望下降超过20%。 加氢储氢业务相关上市公司梳理 第二章:氢产业链中游(燃料电池动力系统) 我国氢燃料电池汽车发展现状 •在政策的支持下,2016-2020年我国氢燃料电池汽车产量逐年提升;2020年受疫情影响,行业产量下滑至1199辆。截止2020年底,我国氢燃料电池汽车保有量为7352辆,进入商业化初期。 •2020年,燃料电池商用车价格约为200万/辆,随着燃料电池系统生产规模化与燃料电池电堆核心零部件国产化,在2025年燃料电池汽车保有量达到5-10万辆的预期下,我们预计燃料电池汽车销售价格将以每年10%的幅度下降。 资料来源:高工产业研究院,国信证券经济研究所整理 氢燃料电池汽车结构 •氢燃料电池汽车的核心为燃料电池发动机系统,其结构主要包括燃料电池发动机、车载储氢系统、冷却系统等。其中,燃料电池发动机系统主要由燃料电池电堆、氢气供给系统、氧气供给系统、发动机控制器等构成。 •供氢系统将氢从氢气罐输送到燃料电池电堆;由空气过滤器、空气压缩机和加湿器组成的供气系统为燃料电池堆提供氧气;水热管理系统采用独立的水和冷却剂回路来消除废热和反应产物(水)。燃料电池系统产生的电力通过动力控制单元驱动电动机,从而驱动车辆行驶,辅助电池则在需要时提供额外的电力。 资料来源:Alternative Fuels Data Center,国信证券经济研究所整理 资料来源:美国能源署,亿华通招股说明书,国信证券经济研究所整理 氢燃料电池 •燃料电池是一种将燃料所具有的化学能直接转换成电能的装置,基本原理是氢气进入燃料电池的阳极,在催化剂的作用下分解成氢质子和电子,形成的氢质子穿过质子交换膜达到燃料电池阴极,在催化剂作用下与氧气结合生成水,电子则通过外部电路到达燃料电池阴极形成电流。 •由于该过程不受卡诺循环效应的限制,因此理论效率可达90%以上,具有很高的理论经济性。不同于铅酸、锂电等储能电池,燃料电池类似于“发电机”,其在将化学能转化为电能的过程中产生的大部分是水,且整个过程不存在机械传动部件,因此没有有害气体排放与噪声污染。 •2019年年产量规模达到百台以上的企业有四家,即上海神力、大连新源动力、江苏清能、广东国鸿。国际燃料电池堆企业已经进入中国市场,拥有较大的市场份额。加拿大巴拉德(Ballard)公司、水吉能(Hydrogenics)公司,日本丰田公司,瑞典PowerCell公司等,以产品销售、技术许可、合资建厂等方式在燃料电池堆输出总量上达到1400多台,占2019年国内电池堆总量的46.7%,其中仅巴拉德一家就出货1370台,占据进口电池堆的97%。 燃料电池电堆:关键材料与核心零部件国产化为降本关键 •燃料电池电堆可谓氢能源车的心脏,燃料电池电堆主要由催化剂、质子交换膜、气体扩散层、双极板,以及其他结构件如密封件、端板和集流板等组成。燃料电池电堆成本占据燃料电池系统成本60%以上,因此降低电堆成本是燃料电池汽车商业化的关键。膜电极与其两侧的双极板则组成燃料电池的基本单元•相比国外燃料电池电堆,国内电堆在核心材料缺乏与关键技术方面仍存在短板,也是燃料电池电堆成本居高不下的主要原因。如膜电极层三大关键材料铂催