您的浏览器禁用了JavaScript(一种计算机语言,用以实现您与网页的交互),请解除该禁用,或者联系我们。[融文]:2023气候变化对细分行业的影响及对策系列报告3汽车行业低碳转型路径研究 - 发现报告

2023气候变化对细分行业的影响及对策系列报告3汽车行业低碳转型路径研究

交运设备2023-08-18融文胡***
2023气候变化对细分行业的影响及对策系列报告3汽车行业低碳转型路径研究

气候变化对细分行业的影响及对策系列报告3:汽车行业低碳转型路径研究 序言 全球气候变化深刻影响着人类生存和发展,是各国共同面临的重大挑战。作为经济活动的重要交通工具和载体,以及交通运输行业主要的碳排放源,汽车的绿色转型步伐决定了道路交通及能源消耗的减碳程度。现阶段,行业公认加大新能源汽车对传统燃油车的替代是汽车产业减碳的有效措施之一。 交通运输——温室气体主要的排放源之一 1990至2021年间,全球温室气体排放总量呈现上升的趋势。1990年,全球温室气体排放共计380亿吨二氧化碳当量(CO2e),2000年为420亿吨,2010年为510亿吨,2020年为540亿吨。2021年,除土地利用、土地利用变化和林业排放以外的全球温室气体排放总量为528亿吨CO2e,2019年为526亿吨。分部门来看,温室气体排放主要来源于五个经济部门:能源供应;工业;农业、林业和其他土地利用变化;运输;建筑中的直接能源使用。 交通运输行业是全球主要的碳排放来源之一,对化石燃料的依赖程度高于其他任何经济部门,其CO2排放量约占全球CO2排放总量的四分之一。1990-2022年,全球交通运输系统的温室气体排放量以近1.7%的年平均增长率增长,增速高于工业(增长率约为1.7%)以外的其他终端用能部门。受疫情影响,2020年全球运输部门的碳排放空前下降,随着近两年国内外疫情逐渐缓解,出行需求逐渐恢复。随着国家繁荣和经济活动增多,人员和货物的流动性有所增加,交通运输部门的能源用量和相关排放也相应激增。(详见图1、图2) 国际能源署(IEA)发布《2022年二氧化碳排放报告》指出,2022年,全球与能源相关的CO2排放量再创新高,超368亿吨,比2021年增加3.21亿吨,增幅为0.9%。2022年,全球碳排放主要来源于电力、工业、交通、建筑四大领域,其中电力碳排放增幅最大(1.8%);工业碳排放下降了1.7%;交通运输部门碳排放增长了2.1%,(详见图3)但电动汽车的推广有效抑制了交通领域的碳排放增长。2022年,全球电动汽车的销量——包括纯电动汽车(BEV)和插电式混合动力电动汽车(PHEV)——突破1000万辆,占全球新车销量的14%以上。(详见图4)若2021年新上路的电动汽车仍是传统燃油车,2022年全球CO2排放量将再增加1300万吨。值得一提的是,中国在交通低碳排放转型方面取得显著成效,与全球交通运输部门排放量的增长相比,2022年,中国交通运输行业整体碳排放量下降了3.1%,中国电动汽车销量突破600万辆,也为降低交通运输行业碳排放做出了巨大贡献。 IEA《2022年二氧化碳排放报告》指出,在能源价格冲击、通胀上升、传统燃料贸易流动中断的一年中,尽管许多国家的用能从天然气转向煤炭,但全球温室气体排放量的增长低于人们担心的水平。可再生能源、电动汽车和热泵等清洁能源技术的部署有效避免了额外的5.5亿吨CO2排放。整体来看,交通运输行业温室气体排放在一段时间内仍将呈现增长趋势。为实现2050年净零排放目标,到2030年,交通运输行业CO2排放量必须每年下降3%以上。 汽车行业是我国CO2重点排放源之一。研究表明,我国交通领域CO2排放量占全国温室气体排放的9%-10%,其中汽车行业占比最高,占70%-80%。2019年,我国乘用车、商用车分别占汽车二氧化碳排放量的38.5%、61.5%;使用汽油、柴油、其他燃料(天然气、醇类燃料等)的车型分别占42.8%、52.5%、4.7%。(详见图5) IEA预测,在“双碳”目标下,中国交通运输CO2排放量在短期内将继续增长,2030年达到略高于10亿吨的峰值,然后逐步下降,到2060年下降至约1亿吨,比2020年降低近90%,但仍将有大部分排放来自减排困难的国内航空、航运以及长途公路货运领域。(详见图6)未来,中国交通运输行业零碳目标的实现将以道路交通为重点,汽车电动化、交通运输系统高效协同将是推动减排降碳的关键因素。 产品端 全生命周期视角下,交通运输体系温室气体主要排放源 以乘用车为例,2021年,在售乘用车的生命周期平均碳排放量按柴油乘用车、汽油乘用车、常规混乘用车、插电混乘用车、纯电动乘用车的顺序依次降低。相较于传统能源乘用车,纯电动乘用车具有明显的生命周期碳减排优势,纯电动乘用车相较汽油乘用车全生命周期碳减排43.4%,相较柴油乘用车全生命周期碳减排59.5%。(详见图7) 生产端 汽车生产涉及各类零部件、技术、生产工艺及流程。车身钢、铝部件通过焊接、接缝和胶水等工艺连接,涂装工艺(清洗、预处理、浸涂、封缝、烘箱等)对应的各个步骤都需要过程材料、能量和水的输入,产生CO2、其他有害气体及废水等。 在汽车整车制造的用能结构中,电能消耗占总能耗的70%。在新能源汽车动力电池制造过程中,大量碳排放同样源于电力消耗,主要来自电芯生产涂布后的烘烤、注液后的干燥以及分容化成等阶段。因此,电池生产和组装环节的碳排放很大程度上取决于电网的脱碳程度,电力清洁程度会极大影响工厂制造端的减碳效果。一般而言,工厂可通过两种方式实现能源消耗绿色化、降低制造环节碳排放:构建内部光伏、风力等可再生能源发电体系;向区域内绿色电力企业或向电网直接采购绿电。 汽油乘用车和柴油乘用车碳排放主要来自燃料周期,占比分别高达77.3%、77%。随着车型电动化程度的增加,车辆周期碳排放占比逐渐增大,燃料周期碳排放占比逐渐减小。以纯电动乘用车为例,其燃料周期碳排放占比为53.6%,而车辆周期占比达46.4%,为传统燃料车的2倍。纯电动乘用车动力蓄电池的材料获取和制造以及车辆使用过程碳排放为零是造成差距的主要原因。(详见图8) 一般而言,常规混乘用车的动力蓄电池能量较小,其对车辆周期碳排放的贡献同样较小。 纯电动乘用车中,动力蓄电池碳排放在车辆周期碳排放中的占比超过三分之一。以三元镍钴锰酸锂动力蓄电池为例,其碳排放中的约23%来自电解液,约32%来自三元正极材料,约35%来自于电池包壳体中的铝合金。随着车辆电动化程度的增加,动力蓄电池碳排放在车辆周期碳排放中的占比逐渐增大,在常规混乘用车中为0.4%,插电混乘用车中为15.0%,纯电动乘用车中为37.4%。(详见图9) 车辆周期包括汽车制造阶段(包括原材料获取、材料加工制造、整车生产、维修保养部件生产)和汽车再生阶段(包括回收拆解、再制造、梯次利用、再生利用)。 燃料周期包括汽车燃料生产阶段(油井-油箱)、汽车产品能效管理阶段(燃料消耗量管理)、燃料(车辆)使用阶段(油箱-车轮)。 数据来源:《中国汽车低碳行动计划(2022)执行摘要》 供应链 根据麦肯锡发布的数据,预计到2025年,电动汽车材料生产阶段排放将占到汽车全生命周期总排放量的45%,到2040年占比将达到85%左右。因此,实现行业碳中和目标不能仅仅依靠汽车的低碳转型,需要上下游产业链共同发力。供应链企业的减碳成效可作为整车企业考察供应商资质的重要评估标准,例如,推动供应商采用可再生电力实现碳减排,只有在所有价值创造阶段都实现碳中和的生产材料才会被采购等,以此实现整个汽车产业链的绿色发展。 此外,新能源汽车使用上游电力的清洁程度决定了电动汽车的碳减排效果。在当前以化石能源为主的电源结构下,电动汽车的全生命周期减碳效果有限。电动汽车在行驶中CO2排放为零,但在电力供应(燃料周期)和车辆生产、回收环节(车辆周期)的碳排放水平仍取决于一次能源供应结构。(详见图10) 资源回收 整车拆解回收及零部件再制造同样具有减碳效益,可直接减少资源从开采到冶炼、加工过程中带来的碳排放。 研究显示,整车拆解可获取报废汽车中包含的黑色及有色金属、催化剂、电子设备、玻璃及车用塑料等在内的有价资源,其中废钢铁、有色金属90%以上可回收利用,而玻璃及塑料的回收利用率可达50%。拆解报废汽车获取“五大总成”(发动机、方向机、变速器、前后桥、车架)、零部件、轮胎、电子电气设备等,均具备再制造条件。与制造新产品相比,这些可重新利用的材料通过再制造、翻新,可实现循环使用,节能60%,节材70%,大气污染物排放量降低80%以上。 根据预测,2025年,中国车载电池的总保有量将超过20亿千瓦时,需要回收和梯次利用的电池总量将达1.25亿千瓦时。废旧锂离子电池中,镍和钴的总含量达10-20%,锂含量达1-4%。目前动力电池火法、湿法等回收方法已逐步成熟,例如,通过湿法回收化学浸出可实现回收95%以上镍钴锰元素及70%以上的锂元素,并实现电池全生命周期32%的减碳效应。 德国:通过《气候保护法》,首次以法律形式确定德国中长期温室气体减排目标,包括到2030年实现温室气体排放总量较1990年至少减少55%。2021年,《联邦气候保护法(修订案)》确立2045年实现碳中和。在汽车、交通、能源领域,要求2030年电动汽车保有量由原来的1000万辆提高至1500万辆;延长电动汽车补贴政策至2025年。计划在2026年前,保证德国交通领域中使用的燃料有14%来自可再生能源,到2030年交通部门碳排放比1990年减少42%。 主要经济体交通领域碳中和路线图及主要路径(详见图13、14) 欧盟 法国:通过《绿色增长能源转型法》,2020年以法令形式正式通过《国家低碳战略》,设定2050年实现碳中和的目标。颁布《交通未来导向法》,计划2040年以前终止出售使用化石燃料的车辆。此外,设定在2030年安装40万个充电桩的目标。立法鼓励开发充电装置,从2025年起,凡是拥有20个以上停车位的非住宅建筑(车站、机场、超市等)须配备占停车位数量至少5%的充电桩。 通过《欧洲气候法》,将欧盟在2050年实现碳中和的承诺写入法律,并设定了减排中期目标,即到2030年其温室气体排放量至少比1990年的排放水平减少55%。在汽车、交通、能源领域,欧盟批准从2035年起禁售化石燃料新车,允许在2035年后继续销售使用碳中和合成燃料的新车。欧盟理事会还通过了一项法规,为新车和货车设定CO2排放标准:与2021年的水平相比,从2030年到2034年,新车的CO2排放量减少55%,新货车的CO2排放量减少50%;从2035年起,新车和货车的CO2排放量将减少100%,即实现零排放。欧盟委员会公布的《可持续和智能交通战略》提出,到2050年,欧盟交通领域碳排放量需降低90%。目前,针对汽车市场,欧盟提出了2030年实现3000万辆电动车的发展目标。增加零排放和低排放汽车销量,从而提升其在整个汽车市场中的占比,这将成为欧洲未来汽车市场发展的重要任务之一。 西班牙:通过《气候变化与能源转型法案》,主要目标包括到2030年,温室气体排放与1990年相比将减少23%,到2050年实现碳中和;可再生能源在全部能源消耗中的比例至少要由目前的20%提升至42%;可再生能源发电量占总发电量的比例也将从目前的40%左右提高到74%。作为欧洲第二大汽车制造商,西班牙计划到2040年,非商业用途车和轻型商用车新车市场100%零排放,到2050年,实现乘用车和轻型商用车车队100%零排放。 挪威:与1990年水平相比,到2030年,温室气体排放量至少减少55%,到2050年减少90%-95%。计划到2025年,禁售新的燃油车型,作为该计划的一部分,从2022年起,挪威公共管理部门将不再采购汽油和柴油车型,只能采购零排放的电动汽车。 荷兰:《气候法案》设立了清晰的气候目标:相较于1990年水平,荷兰的温室气体排放量到2030年将减少49%,到2050年减少95%。这些目标进一步通过《气候规划》《国际能源和气候计划》和《国家气候协议》的政策和手段来具体保证落实。作为传统汽车产业基础薄弱的国家,荷兰在汽车电动化转型上较为容易,计划到2030年全国所有汽车实现零排放。为实现交通和运输清洁化,荷兰政府将限制性和激励性措施相结合,在限制内燃车购买和使用的同时,通过激励措施为电动车购买者和拥有者降低成本。此外,荷兰政府还高度重视国内电动汽车的充电基础设施建设项目,通过推行国家