与埃森哲合作 生成AI时代的治理:360º弹性方法 政策与监管 白皮书10月2024 GettyImages,中途图片: Contents 前言3 执行摘要4 导言5 1线束超过6 1.1检查复杂的现有法规6通过生成AI属性 1.2解决政策目标之间的紧张关系9多种监管制度 1.3明确周围的期望10责任分配 1.4评估现有监管机构的能力11有效执行 2Buildpresent12 2.1应对利益相关者群体的挑战12 2.2促进多利益相关方的知识共享18和跨学科的努力 3规划未来21 3.1有针对性的投资和提升技能21 3.2 4.2 4.2 4.2 结论27 贡献者28 尾注33 地平线扫描22 战略远见25 影响评估和敏捷法规25 国际合作26 免责声明 这份文件由世界经济论坛发布,作为对某个项目、视角领域或互动活动的贡献 。文中所表达的研究发现、解释和结论是世界经济论坛促成并认可的合作过程的结果,但其结果未必反映世界经济论坛的观点,也不一定代表其全部会员、合作伙伴或其他相关方的意见。 ©2024世界经论坛.保留所有权利。本出版物的任何部分均不得以任何形式或通过任何手段进行复制或传输,包括复印和录音,或通过任何信息存储和检索系统。 生成AI2时代的治理 2024年10月 生成AI时代的治理:具有弹性的政策和监管的360º方法 前言 ArnabChakraborty埃森哲首席负责AI官 CathyLi 首席AI、数据与元宇宙;第四次工业革命中心副主任;世界经济论坛执行委员会成员 我们生活在一个快速创新和全球不确定性并存的时代,生成式人工智能(AI)作为一股变革力量脱颖而出。这项技术影响着世界各地的各个行业、经济和社会。随着欧盟(EU)人工智能法案的生效,我们有了全面监管人工智能的先例。美国、加拿大、巴西、非洲联盟、日本和中国等国家和地区也在制定自己的监管框架。这一关键时刻呼唤具有远见卓识的领导力和协作性的前瞻性治理 。 这篇论文是这些努力的结晶,为政策制定者和监管机构提供了清晰的路线图,以应对生成式AI的复杂性。通过分析现有监管空白、各类利益相关者的独特治理挑战以及该技术不断演变的形式,本论文旨在为全球政策制定者提供实用且可实施的工具,以增强其管辖范围内的生成式AI治理。通过这篇论文,我们的AI治理联盟:简报系列我们在2024年1月推出的项目,以及我们的活动和社区会议,旨在在人工智能素养和知识传播方面产生实际影响。 在过去一年中,人工智能治理联盟团结了行业、政府与民间组织及学术界,建立了全球多利益相关方的努力,以确保人工智能服务于更大的公共利益,并保持责任、包容性和可问责性。我们成功地成为政策制定者的重要咨询平台,这些政策制定者正努力应对构建人工智能监管框架的挑战 ,并召集整个人工智能价值链的所有参与者,共同就新兴的人工智能发展问题开展有意义的对话 。 借助埃森哲作为知识合作伙伴,联盟的韧性治理与监管工作组(由超过110名成员组成)为塑造全球监管格局的共同理解做出了贡献。该工作组致力于建立一个全面的治理框架,以在未来有效监管生成式AI的应用。 在这一技术所运营的国际背景下,我们倡导采取协调一致的方法来治理生成式AI,以促进合作与互操作性。这种方法对于应对生成式AI带来的全球挑战至关重要,并确保其利益能够公平共享,特别是在那些可以从其负责任部署中受益匪浅的低资源经济体方面。 我们邀请政策制定者、行业领袖、学术界人士以及民间社会加入我们的努力。共同努力,我们可以塑造一个未来,在这个未来中,生成式AI能够积极地为我们的世界做出贡献,并确保所有人的繁荣、包容和可持续的未来。 执行摘要 政府应解决监管空白、multiplestakeholders参与AI治理,并为未来的生成型AI风险做好准备。 TherapidevolutionandswiftadoptionofgenerativeAIhave促使政府保持同步并为未来的发展和影响做好准备。政策制定者正在考虑如何在公共利益的前提下利用生成性人工智能(AI),平衡经济和社会机遇的同时减轻风险。为了实现这一目标,本论文提供了全面的: 360°治理框架 –独特的每个 解决利益相关者群体在为全社会生成AI治理做出贡献方面的挑战 -培养多方利益相关者并鼓励知识共享跨学科思维 :使用现有法规和线束过去 解决国生家成促A进I引人入工的智差能距创。新和负责任实践的战略有效性取决于及时评估可用的监管杠杆以应对该技术带来的独特挑战和机遇。在制定新的AI法规或授权之前,政府应: –通过采用负责任的以AI实践为例 :合并准备和规划未来 敏捷性进入生成式人工智能治理,培养国际合作生。成式AI的能力正在与其他技术同步发展。 政府需要制定考虑有限资源和全球不确定性 、并具备前瞻性机制以适应技术进步和新兴风险的国家策略。这要求采取以下关键行动 : –对于紧张局势 评估现有法规,并协调由生成式AI引起的法规空白,统筹多项监管工具的政策目标。 –通过 澄清责任分配法律和监管先例,并在发现差距的地方补充努力 –评估现有监管机构应对生成式AI挑战的能力,并考虑将权力集中到专门机构内的权衡利弊。 –为AI提升技能 有针对性的投资和政府招聘 –的生成式 horizon扫描AI创新及其新兴能力相关的可预见风险、与其他技术的融合以及与人类的互动。 :培养整个社会Buildpresent 生成式人工智能治理和跨部门知识共享。 政府政策制定者和监管机构无法独立确保生成式人工智能的韧性治理——还需要来自各行各业、民间社会和学术界的其他利益相关方的参与。政府必须采用更广泛的治理工具,而不仅仅是法规,以: –为准备 远见行使多种可能的未来 -影响评估和敏捷的下游准备 现有法规的法规效应和未来的人工智能发展 –要对齐 国际合作标准和风险分类法,以促进知识和基础设施的共享。 Introduction 需要一个360°框架来实现稳健的生成式AI治理 ,平衡不同司法管辖区内的创新与风险。 随着组织和个人考虑如何最佳地采用生成性人工智能(AI),新的强大功能不断涌现。对于一些人来说,人类与生成性AI共存的未来充满了希望 ;而对于另一些人来说,则充满担忧。确实,在各个行业和领域中,生成性AI既带来了机遇也带来了风险。例如——生成性AI是否会通过改善个性化治疗方案来提升患者的健康结果,或者会引发新的生物安全风险?新闻业是否会通过新的叙事工具得到民主化,还是会促进虚假信息的扩散 ? 生成性人工智能没有一个确定的未来。相反,社会如何适应这项技术将取决于人类在研究、开发 、部署和利用其能力方面所做的决策。政策制定者通过有效的治理,可以有助于确保生成性人工智能促进经济机会和平等的利益分配,保护人权 ,并推动社会进步。 更大的公平性并促进可持续实践。当前做出的治理决策将塑造当前和未来世代的生活方式,以及(和是否)这项技术惠及社会,并决定哪些人被排除在外。 响应生成式AI行业的持续增长及其在全球范围内应用的快速普及,本文概述了如何构建resilient (请提供具体术语,如“韧性”或“稳健性”等)的策略和方法。360°框架治理,在整个开发和使用阶段促进AI创新并减轻风险。该框架旨在支持政策制定者和监管机构构建全面且持久的生成型AI治理体系。然而,该框架的具体实施将在不同司法管辖区之间有所不同,这取决于国家AI战略、AI网络的成熟度、经济和地缘政治环境、个人期望以及社会规范。 图1适应政策和监管的360º方法 P i l l a r 2 : B n e s s p a s t and u i l d H a r 利用现有法规解决由生成AI引起的差距。 p 1 : a r 360º l l P i 治理 s r e n t e 鼓励全社会生成和跨部门人工智能治理知识共享。 : 3 r a P l l i P a e r u t u f l n 将准备和敏捷性纳入生成式AI治理 ,促进国际合作。 5 支柱1 线束过去 greater清晰性和确定性regarding现有的监管环境是必要的,以应对新兴的生成式AI挑战和机遇。 成功实施国家策略以负责任和可信赖的方式治理生成性AI,要求及时评估现有的监管能力——以及其他治理工具——以应对该技术带来的独特机遇和风险。这包括审查现有法律工具、法律法规的充分性,解决监管紧张关系和空白,澄清相关法规等。 在评估生成式AI供应链各参与者的责任分配以及评估有能力的监管机构的有效性和能力时,此类评估必须尊重已在国际人权法中明确规定的根本权利和自由,例如特定群体(如少数群体权利)的保护。1儿童权利2)以及特定领域的法律文 书(例如,针对网络犯罪3和气候变化4).5 1.1检查由生成AI属性复杂的现有法规 随着数字化程度不断提高和个人及职业数据monetization趋势的增长,隐私保护既至关重要又极具复杂性。政策制定者正致力于优先考虑隐私保护的相关考量。 虽然生成式AI正在出现的新特性和能力可能需要制定新的法规,政策制定者和监管机构应首先检查其管辖范围内现有的法规,以应对新出现的挑战。他们还应确定现有法规如何适用于、适应或放弃以促进国家AI战略的目标。探索生成式AI与现有法规的互动需要对受影响法规的技术方面及其法律原则有深入的理解。表1讨论了在生成式AI背景下监管工具可能出现复杂性的示例 。 隐私和数据保护 生成式AI模型由于依赖大量训练数据、强大的推理能力以及容易受到独特敌对攻击的影响,从而放大了隐私、安全和信任风险。6包含个人、敏感和保密信息在内的训练数据集和用户中出现若干风险。 输入数据、收集和处理数据的合法基础缺乏透明度、模型推断个人数据的能力以及模型记忆并披露训练数据部分的可能性。随着数字化程度的不断提高和个人及职业数据商业化趋势的增长,隐私保护既至关重要又极具挑战性。 政策制定者致力于优先考虑适用于数字数据的隐私保护考量,同时创造数据聚合的可能性,从而推动AI促进的重大突破。7这些功能可以促进农业、健康和教育等领域公共产品的创新,或在数据consortium仅限于促进AI模型训练以实现 公共政策目标的狭窄指定例外情况下加以利用。8另一个新兴问题是政策制定者确保生成式AI的安全 性和安全性,即使这可能涉及个人数据的交互,例如在调查和应对严重事件时。这可以通过创建监管豁免和边界来解决,以确保同时保护隐私并实现负责任的AI结果。 6 版权和知识产权 生成性人工智能引发了若干与版权侵权、抄袭以及知识产权(IP)所有权相关的问题(详见重点问题1),目前这些议题在不同司法管辖区的法院中正被考虑之中。涉及个人肖像权、声音以及其他个人属性的权利也受到了影响。 生成“深度假象”(deepfakes)使用生成性人工智能。对人工智能训练的全面规定尚不确定,法官可能根据产品的特性或输出数据与训练数据的频 率和相似程度来判断某些数据使用是否公平。9展望未来,迫切需要对监管框架进行全面审查,并 就如何在内容生成过程中记录人类创造力以主张知识产权保护提供必要的指导。 ISSUESPOTLIGHT1 在受版权保护的数据上训练生成AI系统,以及与文本和数据挖掘异常的紧张关系 文本和数据挖掘(TDM)是指通过数字化复制和分析大量数据与信息来识别模式并发现研究见解的自动化过程。世界各地的诸多司法管辖区——如日本、新加坡、爱沙尼亚、瑞士和欧盟(EU)——在其版权法中引入了特定豁免,以允许从受版权保护的内容中提取TDM,从而促进创新、推动科学发展并创造商业价值。 鉴于生成式人工智能系统用于训练和生成新内容的数据量庞大,各司法辖区应确立有关文本和数据挖掘(TDM)的监管清晰度,以规范生成式人工智能的训练。这可以通过确认人工智能开发是否构成“合理使用”(如合理使用是版权侵权的一项重要抗辩理由)或是否属于某些版权法中认可的豁免范围来实现。例如,英国等国家正在探索此类监管豁免,旨在促进这一领域的发展。 支持创新的AI议